Electrical and Computer Engineering

Mailing Address:
Department of Electrical and Computer Engineering (MC 154)
851 South Morgan Street
Chicago, IL 60607-7053

Contact Information:
Department Office: 1020 SEO Student Affairs Office: 1020 SEO
(312) 413-2291 or (312) 996-4325
grad-info@ece.uic.edu
www.ece.uic.edu

Administration:
Acting Head of the Department: Rashid Ansari
Director of Graduate Studies: Milos Zefran

Program Codes:
20FS1200MS (MS)
20FS1200PHD (PhD)

The Department of Electrical and Computer Engineering offers graduate programs leading to the Electrical and Computer Engineering degrees at the master’s and doctoral levels. Updated information about the curriculum, requirements, policies, courses, faculty, and staff is found on the ECE home page at http://www.ece.uic.edu.

The department offers a comprehensive range of courses in the field of electrical engineering and computer engineering. Major research areas include bioelectronics and biomimetics, computer engineering, electromagnetics, device physics and electronics, and information systems.

Research facilities in ECE include the Nanotechnology Core Facility, a versatile MEMS/Nano facility, which also contains a microfabrication laboratory with a 3,000 square-foot Class 100/1000 clean room that enables a broad spectrum of innovative multidisciplinary research, and, a microfluidics center for studying properties of nanodrops; Andrews Electromagnetics Laboratory; Computational Intelligence Laboratory; Robotics Laboratory; Design Automation and Reconfiguration Technology Laboratory; Laboratory for Energy and Switching Electronics Systems; Multimedia Communications Laboratory; Machine Vision Laboratory; Multimedia Systems Laboratory; Nanoengineering Research Laboratory; Signal and Image Research Laboratory; Nanophotonics Research Laboratory; Wireless Communications Laboratory; Micromechatronic Systems Laboratory; and Advanced Power Electronics Laboratory.

Admission and Degree Requirements

- MS in Electrical and Computer Engineering (http://catalog.uic.edu/gcat/colleges-schools/engineering/ece/ms)
- PhD in Electrical and Computer Engineering (http://catalog.uic.edu/gcat/colleges-schools/engineering/ece/phd)

Courses

ECE 401. Quasi-Static Electric and Magnetic Fields. 3 or 4 hours.
Static electric and magnetic fields. Material description, boundary value problems. Field energy, its conversion and scaling laws. Quasi-static fields, field diffusion, eddy currents, energy losses. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 322.

ECE 407. Pattern Recognition I. 3 or 4 hours.
The design of automated systems for detection, recognition, classification and diagnosis. Parametric and nonparametric decision-making techniques. Applications in computerized medical and industrial image and waveform analysis. Course Information: Same as BIOE 407. 3 undergraduate hours. 4 graduate hours. Prerequisite(s): MATH 220.

ECE 410. Network Analysis. 3 or 4 hours.
Matrix algebra for network analysis, network parameters, macromodeling, high-frequency measurements, network functions and theorems. Topics in computer-aided analysis. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): MATH 310 and grade of C or better in ECE 310.

ECE 411. Introduction to Filter Synthesis. 3 or 4 hours.
Fundamentals of network synthesis, filter approximations and frequency transformations. Active filter synthesis using bi-linear and bi-quad circuits. Topics in computer-aided design. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Grade of C or better in ECE 310.

ECE 415. Image Analysis and Computer Vision I. 3 or 4 hours.
Image formation, geometry and stereo. Two-dimensional image analysis by fourier and other 2-D transforms. Image enhancement, color, image segmentation, compression, feature extraction, object recognition. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): MATH 310 or a grade of C or better in ECE 310.

ECE 417. Digital Signal Processing II. 0-5 hours.
Computer-aided design of digital filters; quantization and round-off effects; FFT algorithms; number-theoretic algorithms; multirate signal processing; DSP architectures and programming. Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 410. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.

ECE 418. Statistical Digital Signal Processing. 3 or 4 hours.
Stochastic signal models, LMS identification, identification of signals from noise, Wiener filtering, blind separation of mixed signal, discrete Wavelet Transforms, compression and denoising, cepstral analysis. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 317 and ECE 341.

ECE 421. Introduction to Antennas and Wireless Propagation. 3 or 4 hours.
Potential, antenna parameters, radiation from line wires and loops, impedance, arrays, communication links and path loss, tropospheric propagation, fading and diversity. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 225 and ECE 322.

ECE 423. Electromagnetic Compatibility. 3 or 4 hours.
EMC requirements for electronic systems. Nonideal behavior of components. Radiated and conducted emissions. Susceptibility. Coupling and shielding. Electrostatic discharge. System design for EMS. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): MATH 310 and ECE 322.

University of Illinois at Chicago
ECE 424. RF and Microwave Guided Propagation. 0-5 hours.
Maxwell's equations, transmission lines, Smith chart, strip lines, rectangular and circular waveguides, TE and TM waves, wave impedance, resonators, two-port parameters, power and energy considerations. Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 225 and ECE 322. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.

ECE 427. Modern Linear Optics. 3 or 4 hours.
Geometrical optics, wave optics, two-dimensional Fourier analysis, scalar diffraction theory, Fourier transforming properties of lenses, coherent and incoherent images, holography, electromagnetic optics, polarization and crystal optics, resonators. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 310 and ECE 322.

ECE 431. Analog Communication Circuits. 0-5 hours.
Introduction to radio frequency circuit design: narrowband transistor amplifiers, impedance matching networks, oscillators, mixers, amplitude and frequency modulation/demodulation, phase-lock loop circuits, amplifier noise and stability analysis. Laboratory. Course Information: 3 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 311 and ECE 340. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.

ECE 432. Digital Communications. 3 or 4 hours.
Source coding, quantization, signal representation, channel noise, optimal signal reception, digital modulation: ASK, PSK, FSK, MSK, M-ary modulation. Probability of error. Inter-symbol interference. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): MATH 310, ECE 311 and ECE 341.

ECE 434. Multimedia Systems. 3 or 4 hours.
Multimedia systems; compression standards; asynchronous transfer mode; Internet; wireless networks; television; videoconferencing; telephony; applications. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 310.

ECE 435. Wireless Communication Networks. 3 or 4 hours.
Radio technology fundamentals; channel and propagation models; channel multiple access technologies; wireless mobile communication fundamentals; generic wireless mobile network; cellular/PCS wireless mobile network standards. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 432 and ECE 333.

ECE 436. Computer Communication Networks II. 3 or 4 hours.
Explores integrated network architecture of service, control signaling and management, examples of high-speed LAN/WAN, next generation Internet and mobile wireless network. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 333.

ECE 437. Wireless Communications. 3 or 4 hours.
Cellular concept, frequency reuse, mobile radio propagation, channel fading, noise in analog communications, mobile radio channel equalization, multiple access techniques (FDMA, TDMA, CDMA), wireless networking. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 311 and ECE 341.

ECE 440. Nanoelectronics. 3 or 4 hours.
Wave-particle duality, Schroedinger equation, atomic orbitals, band theory of solids. Semiconductor and carbon nanoelectronic materials. Nanostructure device fabrication. Nanoelectromechanical systems. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 346; or consent of the instructor.

ECE 442. Power Semiconductor Devices and Integrated Circuits. 0-5 hours.
Covers the physics of devices encountered in the power-electronic and switching converter systems. Course Information: 4 undergraduate hours. 5 graduate hours. Credit is not given for ECE 442 if the student has credit for EECS 442. ECE 442 is a supplement for ECE 445 and ECE 545. Prerequisite(s): ECE 342 and ECE 346. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.

Analysis of different isolated and non-isolated power-converter topologies, understanding of power-converter components, switching schemes. Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 342 and a grade of C or better in ECE 310. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.

ECE 448. Transistors. 3 or 4 hours.
Bipolar junction transistors, electronic processes in surface-controlled semiconductor and dielectric devices. Metal oxide semiconductor filed effect transistors, surface and interface effects, diode lasers, integrated optoelectronic devices. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 346.

ECE 449. Microdevices and Micromachining Technology. 0-5 hours.
Microfabrication techniques for microsensors, microstructures, and microdevices. Selected examples of physical/chemical sensors and actuators. Simulation experiments. Course Information: Same as ME 449. 4 undergraduate hours. 5 graduate hours. Laboratory. Prerequisite(s): ECE 347; or consent of the instructor. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.

ECE 451. Control Engineering. 3 or 4 hours.
State-space representation of systems; realization theory; stability; performance; modern control design techniques, including: fuzzy, learning, adaptive and nonlinear control. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 350.

ECE 452. Robotics: Algorithms and Control. 3 or 4 hours.
Kinematic and dynamic modeling of robots; configuration space; motion planning algorithms; control of robots; sensors and perception; reasoning; mobile robots. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CS 201; and a grade of C or better in ECE 210 or a grade of C or better in ECE 225.

ECE 458. Electromechanical Energy Conversion. 0-4 hours.
Electromagnetic forces and torque; magnetic circuits and transformers; DC machines; three-phase AC synchronous and induction machines; laboratory-demonstrations. Projects are required. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Grade of C or better in ECE 225. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.
ECE 465. Digital Systems Design. 3 or 4 hours.
Switching algebra, combinational circuits, Mux, ROM, DCD, PLA-based designs, advanced combinational circuit minimization techniques, synchronous and asynchronous sequential circuit synthesis (minimization, hazards, races, state assignment) testing. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Grade of C or better in PHYS 142; and a grade of C or better in ECE 265 or a grade of C or better in CS 366.

ECE 466. Advanced Computer Architecture. 3 or 4 hours.
Design and analysis of high performance uniprocessors. Topics include arithmetic: multiplication, division, shifting; processor: pipelining, multiple function units. instruction sets; memory: caches, modules; virtual machines. Course Information: Same as CS 466. 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 366 or CS 366.

ECE 467. Introduction to VLSI Design. 0-5 hours.
MOS, CMOS circuits VLSI technology, CMOS circuit characterization and evaluation. Static and dynamic MOS circuits, system design, faults, testing, and symbolic layout. Laboratory. Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 340. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.

ECE 468. Analog and Mixed-Signal VLSI Design. 0-5 hours.
Elementary transistor stages and analog components; low-power design; comparison of bipolar, CMOS, and BiCMOS; s-parameters and high-frequency ASIC design and modeling; RF wireless communication system components; behavioral modeling. Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 467. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.

ECE 469. Computer Systems Design. 3 or 4 hours.
Analysis and modeling of digital systems; hardware description languages; CAD tools for simulation, synthesis, and verification of computer systems. Project: a simple processor design. Course Information: 3 undergraduate hours. 4 graduate hours. Same as CS 469. Prerequisite(s): CS 366; or ECE 366 and ECE 368.

ECE 491. Seminar. 1-4 hours.
Topics of mutual interest to a faculty member and a group of students. Offered as announced by department bulletin or the Timetable. Course Information: May be repeated. Prerequisite(s): Consent of the instructor.

ECE 493. Special Problems. 2-4 hours.
Special problems or reading by special arrangement with the faculty. Course Information: No gradation credit for students in the following: MS in Electrical and Computer Engineering or PhD in Electrical and Computer Engineering. Prerequisite(s): Consent of the instructor.

ECE 499. Professional Development Seminar. 0 hours.
Graduating seniors will be provided with information regarding future career paths and will provide information regarding the program to be used for assessment purposes. Course Information: Satisfactory/Unsatisfactory grading only. Prerequisite(s): Open only to seniors; and approval of the department. Must be taken in the student's last semester of study.

ECE 510. Advanced Network Analysis. 4 hours.

ECE 513. Advanced Analog Filter Synthesis. 4 hours.
The active biquad, sensitivity analysis, realization of active two-port networks, design of broadband matching networks, and the theory of passive cascade synthesis. Course Information: Prerequisite(s): ECE 412.

ECE 515. Image Analysis and Computer Vision II. 4 hours.
Image analysis techniques, 2D and 3D shape representation, segmentation, camera and stereo modeling, motion, generic object and face recognition, parallel and neural architectures for image and visual processing. Course Information: Prerequisite(s): ECE 415; or consent of the instructor.

ECE 516. Adaptive Digital Filters. 4 hours.
Properties of signals; optimal filters, Wiener and Kalman filters; signal modeling, adaptive filters channel equalizing, echo canceling, noise canceling, and linear prediction; filter properties. Course Information: Prerequisite(s): ECE 317 and ECE 341.

ECE 517. Digital Image Processing. 4 hours.
Operations on 2-D digital images: transforms, enhancement, restoration, warping, segmentation, registration, compression, water marking, steganography, and reconstruction from projection. Course Information: Prerequisite(s): ECE 317 and ECE 341.

ECE 520. Electromagnetic Field Theory. 4 hours.

ECE 521. Computational Electromagnetics. 4 hours.

ECE 522. Advanced Microwave Theory. 4 hours.
Microwave integrated circuits: analysis, design. Microwave devices: filters, cavities and phase shifters. Millimeter waves: components and circuits, millimeter wave applications. Course Information: Prerequisite(s): ECE 420 and ECE 520.

ECE 523. Advanced Antenna Engineering. 4 hours.
Radiation from helix and spiral; aperture antennas; linear and planar array synthesis; Hallen's and other methods for impedance; design of array feeds; reflector and lens antennas. Course Information: Prerequisite(s): ECE 421 and ECE 520.

ECE 526. Electromagnetic Scattering. 4 hours.
Exact solutions of exterior boundary-value problems. Low-frequency expansions. High-frequency methods, including geometrical and physical theories of diffraction. Hybrid techniques. Radar cross-sections. Course Information: Prerequisite(s): ECE 520.

ECE 527. Optical Electronics. 4 hours.

ECE 528. Fiber and Integrated Optics. 4 hours.
Propagation in thin films and fibers. Mode launching, coupling, and losses. Sources, detectors, modulators, interferometers. Fabrication and measurement techniques. Fiber optics systems. Course Information: Prerequisite(s): ECE 520 or the equivalent.
ECE 530. Random Signal Analysis. 4 hours.
Probability for communications, properties and series representations of random processes, random processes through linear and non-linear systems, minimum MSE and maximum SNR systems. Course Information: Prerequisite(s): ECE 341 or consent of the instructor.

ECE 531. Detection and Estimation Theory. 4 hours.
Bayes, Neyman-Pearson and minimax detection for discrete and continuous time random processes. Estimation of random and non-random signal parameters. Estimation of signals. Course Information: Prerequisite(s): ECE 418 or consent of the instructor.

ECE 532. Advanced Digital Communications. 4 hours.
Characteristics of digitally modulated signals; digital signals in additive noise; communication over fading channels and with intersymbol interference; source and channel coding; synchronization; spread spectrum techniques. Course Information: Prerequisite(s): ECE 432 or consent of the instructor.

ECE 533. Advanced Computer Communication Networks. 4 hours.
Computer and telecommunication networks; integrated (data, voice, and video) services; network performance; Quality of Service provisioning. Course Information: Prerequisite(s): ECE 333 and ECE 341; or consent of the instructor.

ECE 534. Elements of Information Theory. 4 hours.
Entropy and mutual information, fundamentals of coding theory, data compression, complexity of sources, channel mutual information and capacity, rate distortion theory, information theory applications. Course Information: Prerequisite(s): ECE 341 or consent of the instructor.

ECE 535. Advanced Wireless Communication Networks. 4 hours.
2nd generation: IS-95-based wireless mobile network; 2nd generation: GSM-based wireless mobile network; 2.5 generation: wireless mobile data/voice network; 3rd generation: broadband wireless mobile multimedia network. Course Information: Prerequisite(s): ECE 432 and ECE 435; and senior standing or above; or consent of the instructor.

ECE 536. Wireless Data Communications and Networking. 4 hours.
The course discusses data services evolution in (2G) wireless systems to achieve specified data rates of 3G. The course focuses on wireless data services in the wide and local area networks Course Information: Prerequisite(s): ECE 432 and ECE 435; and senior standing or above; or consent of the instructor.

ECE 540. Physics of Semiconductor Devices. 4 hours.
Electrons in periodic lattice; equilibrium carrier distribution; energy band diagrams in junctions, in homogeneous semiconductors; recombination and generation; non-equilibrium processes, radiation and electric fields; diodes. Course Information: Same as PHYS 540. Prerequisite(s): ECE 346 or the equivalent.

ECE 541. Microelectronic Fabrication Techniques. 4 hours.
Current fabrication techniques of microelectronic technology; plasma and CVD processes; etching techniques; ion implantation; surface analytical methods. Course Information: Same as ME 541. Prerequisite(s): ECE 347 or ECE 449.

ECE 542. Advanced Semiconductor Devices. 4 hours.
Bipolar Transistor and Related Devices, MOSFET Transistor and Related Devices, MESFET and Related Devices, Quantum-Effect Devices, Photonic Devices. Course Information: Prerequisite(s): ECE 540.

ECE 545. Advanced Power-Electronics Design. 4 hours.
High-frequency-magnetics design and measurement, parasitics, modeling, estimation, and measurement, soft switching for DC-DC converters, distributed DC-DC converters, and design layout. Course Information: Prerequisite(s): ECE 445.

ECE 550. Linear Systems Theory and Design. 4 hours.
State variable description, linear operators, impulse response matrix, controllability, observability, reducible and irreducible realizations, state feedback, state observers and stability. Course Information: Prerequisite(s): ECE 350.

ECE 551. Optimal Control. 4 hours.
Optimal control of dynamic systems in continuous and discrete time, maximum principle, dynamic programming and constraints, learning systems. Course Information: Prerequisite(s): ECE 550 or consent of the instructor.

ECE 552. Nonlinear Control. 4 hours.
Nonlinear phenomena, linear and piecewise linear approximations, describing functions, servomechanisms, phase plane, limit cycles, Lyapunov’s stability theory, bifurcation, bilinear control, vibrational control, learning systems. Course Information: Prerequisite(s): ECE 550 or consent of the instructor.

ECE 553. System Identification. 4 hours.
On-line and off-line identification of control systems in frequency and time domain, considering noise effects, nonlinearities, nonstationarities and distributed parameters. Course Information: Prerequisite(s): ECE 550.

ECE 554. Advanced VLSI Design. 4 hours.
Consent of the instructor.

ECE 555. Physical Design Automation. 4 hours.
Computer-aided physical design of integrated circuits; circuit partitioning and placement; floorplanning; global and detailed routing; timing optimization; general optimization tools: local search, constraint relaxation. Course Information: Same as CS 565. Prerequisite(s): CS 401; and CS 466 or ECE 465.

ECE 556. Parallel Processing. 4 hours.
Parallel processing from the computer science perspective. Includes Architecture (bus based, lockstep, SIMD), Programming Languages (Functional, traditional and extensions), compilers, interconnection networks, and algorithms. Course Information: Same as CS 566. Prerequisite(s): CS 466 or ECE 466; and CS 401.

ECE 557. Artificial Intelligence. 4 hours.
Crisp and fuzzy sets; membership functions; fuzzy operations; fuzzy relations and their solution; approximate reasoning; fuzzy modeling and programming; applications; project. Course Information: Prerequisite(s): Consent of the instructor.

ECE 558. Advanced Microprocessor Architecture and Design. 4 hours.
Microprocessors; embedded control; processor core; system-on-chip; power-aware design; SMT design; Java processors; media processors; network processors; crypto processors; trusted processor architectures; architecture simulation. Course Information: Extensive computer use required. Prerequisite(s): ECE 466 and consent of the instructor.
ECE 569. High-Performance Processors and Systems. 4 hours.
Instruction-level parallelism, multiple-instruction issue, branch prediction,
instruction and data prefetching, novel cache and DRAM organization,
high-performance interconnect, compilation issues, case studies. Course
Information: Same as CS 569. Prerequisite(s): CS 466 or ECE 466; and
graduate standing.

ECE 572. Nanoscale Semiconductor Structures: Electronic and
Optical Properties. 4 hours.
Electronic and optical properties of nanoscale semiconductors and
devices, carrier interactions in dimensionally-confined nanostructures,
deformation potential, piezoelectric potential, polar-optical-phonon
interaction potential. Course Information: Prerequisite(s): PHYS 244 &
ECE 346. Recommended background: Background in semiconductor
device fundamentals such as covered in ECE 346 as well as the
underlying physical principles as covered in PHYS 244.

ECE 594. Special Topics. 4 hours.
Subject matter varies from term to term and section to section, depending
on the specialties of the instructor. Course Information: May be repeated.
Students may register in more than one section per term. Prerequisite(s):
Consent of the instructor.

ECE 595. Departmental Seminar. 0 hours.
Seminar by faculty and invited speakers. Course Information:
Satisfactory/Unsatisfactory grading only. May be repeated.

ECE 596. Individual Study. 1-4 hours.
Individual study or research under close supervision of a faculty member.
Course Information: May be repeated. Students may register in more
than one section per term. No graduation credit for students in the
following: MS in Electrical and Computer Engineering and PhD in
Electrical and Computer Engineering. Prerequisite(s): Consent of the
instructor.

ECE 598. M.S. Thesis Research. 0-16 hours.
M.S. thesis work under the supervision of a graduate advisor. Course
Information: Satisfactory/Unsatisfactory grading only. May be repeated.
Students may register in more than one section per term. Prerequisite(s):
Consent of the instructor. For ECE majors only.

ECE 599. Ph.D. Thesis Research. 0-16 hours.
Ph.D. thesis work under supervision of a graduate advisor. Course
Information: Satisfactory/Unsatisfactory grading only. May be repeated.
Students may register in more than one section per term. Prerequisite(s):
Consent of the instructor. For ECE majors only.