Physics

Mailing Address:
Department of Physics (MC 273)
845 West Taylor Street
Chicago, IL 60607-7059

Contact Information:
Campus Location: 2236 SES
(312) 996-3400
physics@uic.edu
phys.uic.edu

Administration:
Head of the Department: David Hofman
Director of Graduate Studies: Christoph Grein

Program Codes:
20FS0240MA (MS)
20FS0240PHD (PhD)

The Department of Physics offers work leading to degrees in Physics at both the master's and doctoral levels. Experimental and theoretical work leading to a graduate degree is available in the following general areas: atomic, molecular, and laser physics; biophysics; condensed matter and materials physics; high-energy particle physics; and high-energy nuclear physics.

Admission and Degree Requirements
• MS in Physics (http://catalog.uic.edu/gcat/colleges-schools/liberal-arts-sciences/phys/ms)
• PhD in Physics (http://catalog.uic.edu/gcat/colleges-schools/liberal-arts-sciences/phys/phd)

Courses
PHYS 401. Electromagnetism I. 4 hours.
Vector calculus; electrostatic fields in vacuum; solution of electrostatic boundary-value problems; electrostatic fields in material media; electrostatic energy; electric currents. Course Information: Prerequisite(s): PHYS 142 and PHYS 215; or approval of the department.

PHYS 402. Electromagnetism II. 4 hours.
Magnetic fields of steady currents and magnetic materials; electromagnetic induction; magnetic energy; slowly-varying currents; a-c circuits; Maxwell's equations; electromagnetic waves; bounded regions; special relativity. Course Information: Prerequisite(s): PHYS 401; or approval of the department.

PHYS 411. Quantum Mechanics I. 4 hours.
Wave particle duality; wave functions; Schroedinger equation; mathematical structure of quantum mechanics; operators and observables; matrix representation of operators; three dimensional Schroedinger equation. Course Information: Prerequisite(s): PHYS 215 and PHYS 244 and PHYS 245; or approval of the department. Recommended background: MATH 220.

PHYS 412. Quantum Mechanics II. 4 hours.
This is the second semester of a two-semester undergraduate level sequence on the concepts and methods of Quantum Mechanics and their applications. Course Information: Prerequisite(s): PHYS 411; or approval of the department.

PHYS 421. Modern Physics: Atoms and Molecules. 4 hours.
Hydrogenic atoms, electron spin, external fields, multi-electron atoms, diatomic molecules, line widths, photons, radiation from atoms and other electromagnetic processes, positrons, positronium, elastic electron scattering. Course Information: Prerequisite(s): Credit or concurrent registration in PHYS 411.

PHYS 425. Modern Optics. 4 hours.
Review of electromagnetic wave theory and introductory optics; advanced geometrical optics; Fourier transforms and optics; interference and diffraction; solar cells and LEDs; laser cavities and gain media; introduction to nonlinear and fiber optics. Course Information: Prerequisite(s): PHYS 244; or graduate standing; or approval of the department. Class Schedule Information: To be properly registered, students must enroll in one Discussion, one Laboratory and one Lecture.

PHYS 431. Modern Physics: Condensed Matter. 4 hours.
Crystal structures; interatomic binding; lattice vibrations; thermal and magnetic properties; quantum statistical mechanics; free electron theory of metals; electronic band theory; semiconductors and insulators; superconductivity. Course Information: Prerequisite(s): PHYS 411 and PHYS 461; or consent of the instructor.

PHYS 441. Theoretical Mechanics. 4 hours.
Review of Newtonian mechanics; non-inertial reference systems; gravitation and central forces; moment of inertia tensors; rigid body motion; Euler's equations; Lagrangian mechanics; generalized coordinates; Hamilton's equations; coupled oscillators. Course Information: Prerequisite(s): PHYS 142 and PHYS 215; or approval of the department.

PHYS 450. Molecular Biophysics of the Cell. 4 hours.
Introduction to force, time energies at nanometer scales; Boltzmann distribution; hydrodynamic drag; Brownian motions; DNA, RNA protein structure and function; sedimentation; chemical kinetics; general aspects of flexible polymers. Course Information: Same as BIOE 450. Prerequisite(s): PHYS 245 or the equivalent; or approval of the department.

PHYS 451. Modern Physics: Nuclei and Elementary Particles. 4 hours.
Accelerators, detectors, symmetries, conservation laws, leptons, weak interactions, electroweak theory, strong interactions, hadrons, nuclear forces, systematics and reactions, nuclear models, nuclear astrophysics, quarks, quantum chromodynamics. Course Information: Prerequisite(s): PHYS 411.

PHYS 461. Thermal and Statistical Physics. 4 hours.
Thermal equilibrium (Zeroth Law); thermodynamic states (First Law); irreversibility; entropy (Second Law); thermodynamic potentials and properties; phase transitions; kinetic theory of gases; classical statistical mechanics. Course Information: Prerequisite(s): PHYS 245; or approval of the department.

PHYS 469. The Learning and Teaching of Physics. 4 hours.
Provides teacher candidates with the foundations and experiences necessary for teaching physics in secondary schools. For those currently teaching, it will also provide tools and background to improve their physics instruction. Course Information: 4 hours. Same as CI 469. Extensive computer use required. Prerequisite(s): PHYS 244; or approval of the department. Class Schedule Information: To be properly registered, students must enroll in one Lecture-Discussion and one Laboratory.
PHYS 470. Educational Practice with Seminar I. 6 hours.
The first half of a two-segment sequence of practice teaching, including
seminar, to meet certification requirements for teaching in grades six
through twelve. Course Information: Graduate credit only with approval
of the department. Prerequisite(s): Good academic standing in a teacher
education program, completion of 100 clock hours of pre-student-
teaching field experiences, and approval of the department. Class
Schedule Information: To be properly registered, students must enroll in
one Lecture-Discussion and one Practice.

PHYS 471. Educational Practice with Seminar II. 6 hours.
The second half of a two-segment sequence of practice teaching,
including seminar, to meet certification requirements for teaching in
grades six through twelve. Course Information: Graduate credit only with
approval of the department. Prerequisite(s): Good academic standing
in a teacher education program, completion of 100 clock hours of pre-
student-teaching field experiences, credit or concurrent registration in
PHYS 470, and approval of the department. Class Schedule Information:
To be properly registered, students must enroll in one Conference and
one Practice.

PHYS 481. Modern Experimental Physics I. 4 hours.
Theory and experimental use of linear circuits, semiconductor devices,
amplifiers, oscillators. Techniques and experiments in atomic, molecular
and solid-state physics. Course Information: Prerequisite(s): PHYS
244. Requires concurrent registration in PHYS 499. Class Schedule
Information: To be properly registered, students must enroll in one
Laboratory and one Lecture-Discussion.

PHYS 482. Modern Experimental Physics II. 4 hours.
Techniques and experiments in nuclear and particle physics. Gamma-
gamma correlations, muon lifetime, Compton scattering, alpha particle
scattering. Computer-based experimentation. Course Information:
Prerequisite(s): PHYS 481; or approval of the department. Class
Schedule Information: To be properly registered, students must enroll in
one Laboratory and one Lecture-Discussion.

PHYS 494. Special Topics in Physics Teaching. 2-4 hours.
Seminar on various topics related to the teaching of physics. Subjects
are announced. Course Information: May be repeated. Students
may register in more than one section per term. Supervised teaching
practice included. Prerequisite(s): Graduate standing or approval of
the department.

PHYS 499. Survey of Physics Problems. 1 hour.
Problem-solving techniques applied to the variety of undergraduate
physics topics. Course Information: No graduation credit for
graduate students. Grade of C or better required to graduate with an
undergraduate degree in physics. Co-requisite(s): Concurrent registration
in PHYS 481.

PHYS 501. Electrodynamics I. 4 hours.
Maxwell’s equations, static and time dependent fields in material media
and in vacuo. Boundary value problems, wave propagation. Classical
theory of radiation. Course Information: Prerequisite(s): PHYS 402 or
approval of the department.

PHYS 502. Electrodynamics II. 4 hours.
Special relativity in electrodynamics. Covariant form of Maxwell’s
equations. Lagrangian form of electrodynamics. Applications to modern
physics problems. Course Information: Prerequisite(s): PHYS 501 or
consent of the department.

PHYS 511. Quantum Mechanics I. 4 hours.
Linear operators, vector spaces. Schroedinger equation. Heisenberg
formalism. Multi/identical particle systems, approximation methods,
perturbation theory, symmetries and groups, conservation laws,
angular momentum, spin. Wigner-Eckart theorem. Course Information:
Prerequisite(s): PHYS 412 or approval of the department.

PHYS 512. Quantum Mechanics II. 4 hours.
Scattering theory, partial waves, Born approximation, density matrix,
interaction of radiation with matter; Klein-Gordon and Dirac equations,
free-particle solutions, antiparticles, relativistic hydrogen atom. Second
quantization. Course Information: Prerequisite(s): PHYS 511 or approval
of the department.

PHYS 513. Quantum Field Theory I. 3 hours.
Lagrangian formulation of relativistic wave equations. Quantum
electrodynamics: Feynman rules, trace theorems, lowest-order
calculations for several processes, self-energy, renormalization, higher-
order diagrams. Course Information: Prerequisite(s): PHYS 512.

PHYS 514. Quantum Field Theory II. 3 hours.
Path integrals, gauge theories, Weinberg-Salam model, electroweak
processes, quantum chromodynamics, non-perturbative methods,
topological objects in field theories, instantons. Course Information:
Prerequisite(s): PHYS 513.

PHYS 515. Methods in Mathematical Physics. 3 hours.
Applications of mathematical methods to physics problems, linear
operators, orthogonal functions, Green’s functions, ordinary and partial
differential equations. Sturm-Liouville problem, Hilbert space, group
theory. Course Information: Prerequisite(s): PHYS 215.

PHYS 520. Molecular Physics. 3 hours.
Rotational and vibrational energies of molecules, potential curves,
electronic transitions, transition moments, intensity rules, thermodynamic
properties. Applications. Course Information: Prerequisite(s): PHYS 411
and PHYS 421; or approval of the department.

PHYS 522. Laser Physics/Quantum Electronics. 3 hours.
Laser physics; population inversion; quantum theoretical calculation;
modern laser systems; coherence phenomena; applications of lasers.
Course Information: Prerequisite(s): PHYS 521 or approval of the
department.

PHYS 524. Group Theory in Physics. 3 hours.
Applications of group theory and symmetry principles to problems in
elementary particle, solid state, atomic and molecular physics. Course
Information: Prerequisite(s): PHYS 512 or approval of the department.

PHYS 525. Optics and Photonics. 2 hours.
Electromagnetic wave theory; advanced geometrical, nonlinear, fiber, and
Fourier optics; Fourier transforms; interference; diffraction; solar cells;
LEDs; laser cavities; gain media. More challenging problem sets, exams,
labs than in Phys 425. Course Information: Corequisites: Requires
concurrent registration in PHYS 425. To be properly registered, students
must enroll in one Lecture, one Laboratory, and one Discussion.

PHYS 531. Solid State Physics I. 3 hours.
Crystal structure, reciprocal lattice, X-ray methods, crystal forces,
phonons, heat capacity, thermal expansion. Classification of solids, band
Course Information: Prerequisite(s): PHYS 412 AND PHYS 461.
PHYS 532. Solid State Physics II. 3 hours.
Semiconductor physics, electron-electron and electron-phonon interactions, superconductivity, spin systems, diamagnetism, paramagnetism, ferromagnetism, and anti-ferromagnetism. Course Information: Prerequisite(s): PHYS 531.

PHYS 533. Theory of Solids: Magnetism and Superconductivity. 3 hours.
The main body problem; many-particle states; functional integrals; Green's functions; Feynman diagrams; perturbation expansions; tree diagrams. Course Information: Prerequisite(s): PHYS 512 and PHYS 532.

PHYS 534. Theory of Solids: Semiconductor Physics. 3 hours.
Spin systems; magnetism; equilibrium Green's functions; Landau theory of Fermi liquids; Hubbard model; Luttinger model, non-equilibrium Green's functions, Keldysh, Kadanoff-Baym approach. Course Information: Prerequisite(s): PHYS 512 and PHYS 532.

PHYS 540. Physics of Semiconductor Devices. 4 hours.
Electrons in periodic lattice; equilibrium carrier distribution; energy band diagrams in junctions, in homogeneous semiconductors; recombination and generation; non-equilibrium processes, radiation and electric fields; diodes. Course Information: Same as ECE 540. Prerequisite(s): ECE 346 or the equivalent.

PHYS 545. Introduction to General Relativity. 3 hours.
Principle of equivalence, the metric field and geodesics, tensor analysis and differential geometry, Einstein's equations and the action principle, gravitational fields and waves, black holes. Course Information: Prerequisite(s): PHYS 502 and PHYS 541 or approval of the department.

PHYS 551. Elementary Particle Physics I. 3 hours.
Phenomenology and theories of modern day particle physics. Classification of particles and their interactions. Survey of experimental techniques, accelerators and detectors. Course Information: Prerequisite(s): PHYS 512 or approval of the department.

PHYS 552. Elementary Particle Physics II. 3 hours.
Lagrangian formulation of electromagnetic, weak and strong interactions. Transition rates. Unification of electroweak and strong interactions. Gauge theories. Modern topics. Course Information: Prerequisite(s): PHYS 551 or approval of the department.

PHYS 561. Statistical Mechanics. 3 hours.
Density matrix. Information theory; Boltzmann-Gibbs distribution; the n-vector model; renormalization group theory; cellular automata. Course Information: Prerequisite(s): PHYS 461 or approval of the department.

PHYS 581. Advanced Experimental Physics. 2 hours.
Experimental techniques in atomic, molecular and solid- state physics. Course Information: Prerequisite(s): PHYS 431 or consent of the instructor.

PHYS 594. Special Topics in Modern Physics. 1-4 hours.
Lectures on topics of current interest. Subjects are announced in the previous semester. Course Information: May be repeated. Students may register in more than one section per term. Prerequisite(s): PHYS 512.

PHYS 595. Graduate Seminar. 1 hour.
Seminars in areas of research activity within the department covering recent contributions to the literature and research in progress. Presentations by students, faculty and scientists from other institutions. Course Information: Satisfactory/Unsatisfactory grading only. May be repeated to a maximum of 6 hours. Students may register in more than one section per term.