Industrial Engineering (IE)

Courses

IE 411. Mechatronics I. 0-4 hours.
Elements of mechatronic systems, sensors, actuators, microcontrollers, modeling, hardware in the loop simulations, real time software, Electromechanical systems laboratory experiments. Course Information: Same as ME 411. 3 undergraduate hours. 4 graduate hours. Extensive use of computer required. Prerequisite(s): Senior standing or above or approval of the department. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture.

IE 412. Dynamic Systems Analysis I. 3 or 4 hours.
Classical control theory, concept of feedback, Laplace transform, transfer functions, control system characteristics, root locus, frequency response, compensator design. Course Information: Same as ME 412. 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ME 308.

IE 441. Ergonomics and Human Factors. 3 or 4 hours.
The study of principles and techniques associated with ergonomic problems. Topics include human information input and processing, human output and control, and ergonomic considerations in safety. Course Information: Same as EOHS 441. Previously listed as IE 341. 3 undergraduate hours; 4 graduate hours. Prerequisite(s): Credit or concurrent registration in IE 342 or consent of the instructor.

IE 442. Design and Analysis of Experiments in Engineering. 0-4 hours.
Covers different methods for statistical design of engineering experiments, executing them and analyzing their results. Course Information: Prerequisite(s): IE 342. Class Schedule Information: To be properly registered, student must enroll in one Lecture-Discussion and one Laboratory-Discussion.

IE 444. Interdisciplinary Product Development I. 3 or 4 hours.
Cross-functional teams (with students from AD 420/423 and MKTG 594) research and develop new product concepts. Focus on the identification of technologically appropriate product design problems. Course Information: Same as ME 444. 3 undergraduate hours. 4 graduate hours. Year-long (with IE/ME 445) project course. Prerequisite(s): Senior standing or above; and consent of the instructor.

IE 445. Interdisciplinary Product Development 2. 4 hours.
Cross-functional teams (with students from AD 420 and MKTG 594) research and develop new product concepts. Focus on solutions to the opportunities identified in IE/ME 444 to functional prototypes. Serves as a replacement for IE/ME 396. Course Information: Same as ME 445. Year-long (with IE/ME 444) project course. Prerequisite(s): IE 444 or ME 444; and senior standing or above; and consent of the instructor.

IE 446. Quality Control and Reliability. 3 or 4 hours.
Principles of statistical quality control including control by variable and by attribute, construction and use of control charts for variables, fraction defectives and number of defects and use of standard plans, reliability and life cycle testing. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): IE 342.

IE 461. Safety Engineering. 3 or 4 hours.
Human protection systems; accident and emergency handling; manufacturing and service hazard systems. Course Information: Same as EOHS 460. 3 undergraduate hours. 4 graduate hours. Prerequisite(s): IE 342 or consent of the instructor.

IE 463. Plant Layout and Materials Handling. 3 or 4 hours.
Facilities design functions, computer-aided plant layout, facility location, warehouse layout Minimax location, deterministic and probabilistic models. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Credit or concurrent registration in IE 345 and Credit or concurrent registration in IE 472 and IE 473 and IE 365 and IE 201 and IE 467.

IE 464. Virtual Automation. 0-4 hours.
Fundamentals of manufacturing and automation modeling using CAD/ CAM and computer-integrated manufacturing methods; concepts of virtual manufacturing; industrial robots and automated factory models within virtual environments. Course Information: Same as ME 464. 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CS 107 or CS 108. Class Schedule Information: To be properly registered, students must enroll in one Lecture-Discussion, and one Laboratory.

IE 465. Manufacturing Information Systems. 0-4 hours.
Design and implementation of supervisory control and data acquisition systems; manufacturing systems controller and communication networks. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Senior or graduate standing, or consent of the instructor; and familiarity with computer programming. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.

IE 466. Production Planning and Inventory Control. 3 or 4 hours.
Principles of production planning, master scheduling, job sequencing, design and control of deterministic and stochastic inventory systems, material requirement planning. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Credit or concurrent registration in IE 345 and Credit or concurrent registration in IE 472 and IE 473.

IE 467. Discrete Event Computer Simulation Application. 3 or 4 hours.
The solution of industrial application problems by means of discrete event computer simulation. Simulation model building. Input analysis. Output analysis. In depth study of some specific simulation programming languages, with projects. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): IE 342.

IE 468. Virtual Manufacturing. 3 or 4 hours.
Virtual reality applications in manufacturing systems design, manufacturing applications of networked virtual reality, virtual reality modeling of occupational safety engineering. Course Information: Same as ME 468. 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CS 107 or CS 108.

IE 471. Operations Research I. 3 or 4 hours.
Introduction to operations research, formulation of linear programming problems, simplex methods, duality theory, sensitivity analysis, network models, and integer linear programming. Course Information: 3 undergraduate hours. 4 graduate hours. No graduate credit for industrial engineering majors. Prerequisite(s): MATH 310.

IE 472. Operations Research II. 3 or 4 hours.
Nonlinear programming problems, unconstrained optimization search techniques. Kuhn-Tucker theorems, quadratic programming, separable programming, meta heuristics, goal programming, and dynamic programming. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CS 107 or CS 109, and IE 471 or graduate standing.
IE 473. Stochastic Processes and Queuing Models. 3 or 4 hours.
Stochastic dynamic systems, queuing networks, probabilistic state
transition models and nondeterministic decision making models. Course
Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): IE
342 and Credit or concurrent registration in IE 471 and MATH 210.

IE 481. Additive Manufacturing Process. 3 or 4 hours.
Covers aspects of additive manufacturing. The types that are covered
are generic process, design, vat photopolymerization, extrusion based,
jetting, direct writing, 3D bio-printing, powder bed fusion, slicing, and data
representation. Course Information: Same as ME 481. 3 undergraduate
hours. 4 graduate hours. Recommended background: Manufacturing
Processes.

IE 494. Special Topics in Industrial Engineering. 3 or 4 hours.
Particular topics vary from term to term depending on the interests of
the students and the specialties of the instructor. Course Information:
3 undergraduate hours. 4 graduate hours. May be repeated.
Prerequisite(s): Consent of the instructor.

IE 496. Undergraduate Senior Design Thesis I. 0-8 hours.
Introduction to the principles and practice of product design:
specifications, evaluation of design alternatives, technical reports,
and oral presentations, through independent design projects. Course
Information: Same as ME 496. Credit only given to nondegree students.
No graduation credit given to students enrolled in Engineering.
Extensive computer use required. Field trips required at a nominal fee.
Prerequisite(s): Consent of the instructor.

IE 497. Undergraduate Senior Design Thesis II. 0-8 hours.
Introduction to engineering design and research methods: design tools,
product conception and development, simulation, prototyping, technical
reports and presentations, through independent design projects. Course
Information: Same as ME 497. Credit only given to nondegree students.
No graduation credit given to students enrolled in Engineering.
Extensive computer use required. Field trips required at a nominal fee.
Prerequisite(s): Consent of the instructor.

IE 499. Professional Development Seminar. 0 hours.
Students are provided general information about their role as UIC MIE
alumni in society and the role of the University in their future careers.
Students provide evaluations of their educational experience in the
MIE department. Course Information: Same as ME 499. Satisfactory/
Unsatisfactory grading only. Prerequisite(s): Open only to seniors; and
approval of the department. Must be taken in the student's last semester
of study.

IE 511. Mechatronics II. 4 hours.
Microcontrollers used in electro-mechanical systems for measurement
and control purposes, interface hardware, real time software and
development tools, applications in robotic motion control and factory
automation. Course Information: Same as ME 511. Prerequisite(s): ME
411 and consent of the instructor. Class Schedule Information: To be
properly registered, students must enroll in one Laboratory and one
Lecture.

IE 525. Technology to Promote Physical Activity Among Persons
with Disabilities. 3 hours.
Applications of new and emerging technologies to promote participation
in and adherence to healthful physical activity by people with disabilities.
Considers ways of redesigning physical, social and attitudinal
environments to achieve these outcomes. Course Information: Same as
DHD 525. Recommended background: DHD 515 or an equivalent course
on interpreting research findings.

IE 542. Advanced Computational Methods for Product and Process
Design. 4 hours.
Deterministic and statistical methods for modeling and optimizing
engineering systems, in the broad context of product design,
manufacturing process development, and designing for life cycle issues.
Course Information: Same as ME 542. Prerequisite(s): Programming
language experience.

IE 552. Applied Stochastic Processes. 4 hours.
Stationary point processes; Markov renewal theory; semi-Markov
processes; regenerative processes; computational methods and
applications to queues, inventories, dams, and reliability. Course
Information: Prerequisite(s): IE 342.

IE 562. Supervisory Control of Discrete Event Systems. 4 hours.
Discrete event systems; languages and automata, supervisory control,
timed models, supervisory control applications. Course Information:
Extensive computer use required.

IE 565. Expert Systems in Manufacturing. 4 hours.
Industrial uses of expert systems; applicability to industrial processes;
availability of commercial expert systems; design and implementation
of expert systems; knowledge engineering, research uses of expert
systems. Course Information: Prerequisite(s): CS 102 or CS 107 or the
equivalent.

IE 566. Data Mining for Machine Health Diagnosis and Prognosis. 4
hours.
Theories and techniques of data mining to machinery health diagnosis
and prognosis, case studies on rotor shafts, bearings, gearboxes fault
diagnosis and remaining useful life prognosis.

IE 569. Advanced Virtual Manufacturing. 4 hours.
Manufacturing systems design optimization using virtual environments,
optimization of manufacturing decision support using virtual reality
interfaces, analysis and evaluation of virtual environments. Course
Information: Same as ME 569. Prerequisite(s): Consent of the instructor.

IE 571. Statistical Quality Control and Assurance. 4 hours.
The importance of quality in products and services, quality surveillance,
Deming's management method, Ishikawa's seven tools, control charts,
acceptance sampling, quality improvement using directed experiments.
Course Information: Same as IDS 571. Prerequisite(s): At least one term
of statistics.

IE 575. Integer and Combinatorial Optimization. 4 hours.
Modeling, computational complexity, polyhedral theory, valid inequalities,
duality and relaxation, branch-and-bound algorithms, cutting plane
algorithms, heuristic algorithms, and real-world application. Course
Information: Prerequisite(s): IE 471.

IE 576. Nonlinear Optimization. 4 hours.
Convex analysis, line search techniques, unconstrained and constrained
optimization, optimality conditions, duality, convex and nonconvex
optimization, large-scale optimization, and real-world applications. Course
Information: Prerequisite(s): IE 471 or the equivalent.

IE 594. Current Topics in Industrial Engineering. 4 hours.
Particular topics vary from term to term depending on the interests of the
students and the specialties of the instructor. Course Information: May be
repeated. Prerequisite(s): Consent of the instructor.
IE 595. Industrial Engineering Seminar. 0-1 hours.
Advances in Industrial Engineering research will be discussed in a seminar setting. Course Information: Satisfactory/Unsatisfactory grading only. Must be taken every semester by all registered MS and PhD students in Industrial Engineering. Students taking the course for one credit hour submit reflective summaries of the presentations. Prerequisite(s): Graduate standing in industrial engineering.

IE 596. Independent Study. 1-4 hours.
Individual study under close supervision of a faculty member. Course Information: May be repeated to a maximum of 4 hours. Students may register in more than one section per term. Prerequisite(s): Consent of the instructor.

IE 598. M.S. Thesis Research. 0-16 hours.
Individual research in specialized problems under close faculty supervision. Course Information: Satisfactory/Unsatisfactory grading only. May be repeated. Prerequisite(s): Consent of the instructor.

IE 599. Ph.D. Thesis Research. 0-16 hours.
Individual research on specialized problems under close faculty supervision. Course Information: Satisfactory/Unsatisfactory grading only. May be repeated. Prerequisite(s): Consent of the instructor.