Department of Chemical Engineering

Contact Information:
Campus Location: 629 Engineering Innovation Building (EIB)
(312) 996-3424
emarti59@uic.edu
www.che.uic.edu

Administration:
Head, Dr. Vikas Berry, vikasb@uic.edu
Director of Graduate Studies, Dr. Ying Liu, liuying@uic.edu
Director of Undergraduate Studies, Dr. Alan D. Zdunek, zdunek@uic.edu

Student Services: Undergraduate Program/Student Advisor, Eduardo Martinez, emarti59@uic.edu
Academic Advisors: Professors Achinivu, Berry, Bilgin, Caracotsios, Chaplin, Dandu, Kim, Liu, Mehraeen, Ngo, Sharma, Singh, Torabi, Wedgewood, and Zdunek

In the Chemical Engineering curriculum, students learn to apply chemistry, physics, and mathematics to the industrial-scale design and production of materials and chemicals, including petroleum products, polymers, pharmaceuticals, electronic devices, consumer products, and foods. This program also explores chemical engineering applications in developing processes for carbon-capture, sustainability, plastics recycling, environmental protection, waste treatment and reducing global warming gases, the creation of alternative energy sources, and other frontiers, such as biotechnology, drug delivery, molecular engineering, microelectronic materials, nanotechnology, and data science.

The BS in Chemical Engineering program offers expertise in a wide variety of areas, including energy and the environment, molecular engineering, nanotechnology, electrochemistry, process design, process control and process simulation. Students may use elective courses to specialize in these and other areas. The program’s goal is to prepare students for careers in industry or government, and for further study at the graduate level. As the only chemical engineering department at a public university in the Chicago metropolitan area, this program provides unique opportunities for students to interact with industry mentors during their senior capstone design projects, and with world-class industries through undergraduate research projects and internship programs.

Accreditation
The Chemical engineering program at UIC is accredited by the Engineering Accreditation Commission of ABET

Degree Programs
- BS in Chemical Engineering
- Joint BS in Chemical Engineering/MS in Chemical Engineering

Minor
- Minor in Chemical Engineering

CHE 101. Introduction to Chemical Engineering Concepts. 3 hours.
Overview of engineering and chemical principles used in chemical engineering technology. Thermodynamics, transport phenomena, and reaction engineering applied to process and product design. Course Information: Prerequisite(s): Credit or concurrent registration in MATH 180; and Credit or concurrent registration in CHEM 122 and Credit or concurrent registration in CHEM 123.

CHE 150. Climate Engineering for Global Warming. 3 hours.
Overview of the engineering perspective on climate change and strategies to engineer the earth’s climate and mitigate risks associated with global warming. Natural World - No Lab course.

CHE 201. Introduction To Thermodynamics. 3 hours.
Work and energy; conversion of energy; theory of gases and other states of matter; applications to energy conversion devices. Second Law of thermodynamics, entropy, and equilibrium, with applications. Course Information: Prerequisite(s): MATH 181 and PHYS 141. Class Schedule Information: To be properly registered, students must enroll in one Discussion/Recitation and one Lecture.

CHE 205. Computational Methods in Chemical Engineering. 3 hours.
Computational methods and software relevant to unit operations. Excel spreadsheets (curve fitting, heat conduction), Matlab, Aspen Plus (process simulation), algorithms and object oriented concepts in chemical engineering. Course Information: Prerequisite(s): Credit or concurrent registration in CHE 201; and credit or concurrent registration in MATH 210.

CHE 210. Material and Energy Balances. 4 hours.
Material and energy balances applied to chemical systems. Introduction to chemical and physical properties. Introduction to the use of computers for chemical process calculations. Course Information: Prerequisite(s): Credit or concurrent registration in CHE 201; and credit or concurrent registration in MATH 210.

CHE 230. Molecular Systems in Chemical Engineering. 3 hours.
Introduction to fundamental concepts in molecular engineering and materials chemistry; properties of molecular systems and applications of macromolecules, bio-macromolecules and nanomaterials in energy, medicine, environment and technology. Course Information: Prerequisite(s): CHEM 232.

CHE 301. Chemical Engineering Thermodynamics. 3 hours.
Review of classical engineering thermodynamics. Multicomponent systems & multicomponent phase equilibria. Equilibrium in chemically reacting systems, heterogeneous equilibrium, Gibbs phase rule, and electrochemical processes. Course Information: Prerequisite(s): CHE 201 and CHE 205.

CHE 311. Transport Phenomena I. 3 hours.
Momentum transport phenomena in chemical engineering. Fluid statics. Fluid mechanics; laminar and turbulent flow; boundary layers; flow over immersed bodies. Course Information: Prerequisite(s): Credit or concurrent registration in CHE 210; and MATH 220; and CHE 205.

CHE 312. Transport Phenomena II. 3 hours.

CHE 313. Transport Phenomena III. 3 hours.
Mass transfer and phase equilibria. Multistage separations; applications in distillation; extraction; absorption and drying. Course Information: Prerequisite(s): CHE 301.
CHE 321. Chemical Reaction Engineering. 3 hours.
Kinetics of homogeneous single reactions. Ideal reactors: batch, stirred tank and plug flow systems. Conversion and yield in multiple reactions. Design and optimization of reactors. Non-isothermal reactors. Course Information: Prerequisite(s): CHE 210; and MATH 220; and Credit or concurrent registration in CHE 301.

CHE 330. Polymer Science. 3 hours.
Overview of polymer science and engineering. Introduction to polymers as an engineering material: basic concepts of properties; synthesis and structure of polymeric materials, polymer production, property prediction and performance in products. Course Information: Prerequisite(s): CHE 230 or CME 260; and CHEM 232.

CHE 341. Chemical Process Control. 3 hours.
Analysis and design of chemical processes and control systems. Feedback and feedforward controllers. Stability, tuning, and simulation of P-I-D controllers. Introduction to the control of chemical plants and digital process control. Course Information: Prerequisite(s): MATH 220 and CHE 312 and CHE 313 and CHE 321.

CHE 381. Chemical Engineering Laboratory I. 2 hours.
Heat and momentum transfer operations associated with chemical processes. These include heat exchangers, fluid properties, and fluid flow. Technical report writing, computer calculations. Course Information: Prerequisite(s): CHE 312.

CHE 382. Chemical Engineering Laboratory II. 2 hours.
Heat momentum and mass transfer operations associated with chemical processes; these include distillation columns, reactors, humidifiers, and evaporators. Course Information: Prerequisite(s): CHE 381 and concurrent registration in CHE 313.

CHE 391. Chemical Engineering Practicum. 1 hour.
Provides students with the opportunity to apply the skills and knowledge gained in previous engineering courses within a professional, working environment. Course Information: Satisfactory/Unsatisfactory grading only. May be repeated. A maximum of 1 hour awarded toward degree requirements. Prerequisite(s): Approval of the Department.

CHE 392. Undergraduate Research. 1-3 hours.
Undergraduate research project in any area of Chemical Engineering. Projects may be theoretical, experimental, or literature surveys. Course Information: May be repeated. Students may register in more than one section per term. Prerequisite(s): Consent of the instructor.

CHE 396. Senior Design I. 3 or 4 hours.
Introduction to modern, process design and development, engineering economics, and report writing. Design and cost of equipment relating to materials handling to heat transfer, mass transfer, and reactors. Course Information: Continuing students will take the course for 4 hours and students entering after Fall 2020 will take the course for 3 hours. Prerequisite(s): CHE 312 and CHE 313 and Credit or concurrent registration in CHE 321.

CHE 397. Senior Design II. 4 hours.
Application of principles and design methodology of chemical engineering to the design of large-scale chemical processes and plants. A major design project is assigned for solution and presentation by students working in small groups. Course Information: Extensive computer use required. Prerequisite(s): CHE 396.

CHE 410. Transport Phenomena. 3 or 4 hours.
Continuum theory of momentum, energy, and mass transfer. Viscous behavior of fluids. Laminar and turbulent flow. Thermal conduction and convection, diffusion and coupled operations. Course Information: Same as MENG 410. 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CHE 312 or consent of the instructor.

CHE 413. Introduction to Flow in Porous Media. 3 or 4 hours.
Theoretical modeling of single-phase and multiphase flow in porous media. Darcy’s law and relative permeabilities. Oil production and hydrology. Capillary phenomena. Dispersion and miscible displacement. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CHE 312 or consent of the instructor.

CHE 421. Combustion Engineering. 3 or 4 hours.
Combustion chemistry and thermochemistry. Kinetics and mechanism of combustion; ignition and pollutant formation. Detonation and deflagration; premixed and diffusion flames. Surface reaction and droplet combustion. Applications. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CHE 301 and CHE 321.

CHE 422. Biochemical Engineering. 3 or 4 hours.
Enzyme-catalyzed and microbially-mediated processes. Free and immobilized enzymes. Batch and continuous cell cultures. Transport phenomena in microbial systems and fermentation processes. Design of biological reactors. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Consent of the instructor.

CHE 423. Catalytic Reaction Engineering. 3 or 4 hours.
Catalytic reactions which occur under conditions for which heat and mass transfer cannot be neglected are considered. Includes porosimetry, surface area measurements and catalyst deactivation. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CHE 321 or consent of the instructor.

CHE 425. Nanotechnology for Pharmaceutical Applications. 3 or 4 hours.
Emerging role of nanostructures in drug development and delivery. Principles of nanostructure formation, characterization, surface functionalization, in vitro and in vivo transport, and visualization. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CHE 301 and CHE 311 and CHE 312; or consent of the instructor.

CHE 427. Entrepreneurship in Engineering. 0-4 hours.
Fundamentals of entrepreneurship and technology commercialization for engineers. Introduction to intellectual property, marketing studies, business development, pitching new technology ideas to investors, guidelines for starting a business. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Junior standing or above. Class Schedule Information: To be properly registered, students must enroll in one Lecture and one Discussion.

CHE 433. Process Simulation With Aspen Plus. 3 or 4 hours.
Application of Aspen Plus to design, modeling and simulation of process flow sheets. Property models, unit operations, heat integration and pinch analysis, electrolytes, nonconventional solids (e.g., coal), computational aspects. Course Information: CHE 312 and CHE 313 and CHE 321; or consent of the instructor.

CHE 438. Computational Molecular Modeling. 3 or 4 hours.
Provide students with a fundamental understanding of the methods, capabilities and limitations of molecular simulations. Course Information: Same as MENG 412. 3 undergraduate hours. 4 graduate hours. Extensive computer use required. Prerequisite(s): CHE 301. Recommended background: Engineering/Science.
CHE 440. Non-Newtonian Fluids. 3 or 4 hours.
Fluid mechanics and transport processes involving non-Newtonian fluids. Purely viscous and viscoelastic behavior. Viscometric functions and rheometry. Heat and mass transfer in non-Newtonian fluids. Course Information: Same as MENG 411. 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CHE 410 or MENG 410 or consent of the instructor.

CHE 441. Computer Applications in Chemical Engineering. 3 or 4 hours.
Nonnumerical applications of computers: artificial intelligence and expert systems for chemical engineering design and online diagnosis; data acquisition and control for digital process control; process design calculations. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Senior standing in chemical engineering.

CHE 450. Air Pollution Engineering. 3 or 4 hours.
Environmental aspects of combustion processes, pollutant formation. Control of pollutants and particulates. Air quality control. Fundamentals of combustion. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ME 321 or consent of the instructor.

CHE 451. Renewable Energy Technologies. 3 or 4 hours.
Fundamentals of renewable energy technologies; solar, wind, biomass. Introduction to energy storage technologies; batteries and fuel cells, and analysis of the hydrogen economy. Course Information: 3 undergraduate. 4 graduate hours.

CHE 453. Fundamentals of Electrochemistry. 3 or 4 hours.
Introduction to the fundamentals of electrochemistry and its application in a variety of technologies (i.e., batteries, fuel, cells, electrolysis cells). Includes methods for the analysis of cells using electrochemical techniques. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Consent of the instructor.

CHE 454. Molecular and Macromolecular Engineering. 3 or 4 hours.
Advanced course in polymer science and engineering. Polymerization, polydispersity, molecular configuration, solution properties, thermodynamics, glass and rubbery states, crystallization, viscoelasticity, elastic properties, multiphase systems. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CHE 330.

CHE 455. Nanoscale Systems in Chemical Engineering. 3 or 4 hours.
Basic principles associated with nanoscience and nanotechnology; fabrication and synthesis, size dependent properties, characterization; applications of materials at nanometer length scales; emphasis on recent technological breakthroughs. Course information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CHE 230.

CHE 456. Fundamentals and Design of Microelectronics Processes. 3 or 4 hours.
Design and practical aspects of the most advanced state of micro- and nano-electronics processing with emphasis on thin film deposition, substrate passivation, lithography and etching with thermodynamics, kinetics, reactor design, and optimization. Course Information: Same as MENG 413. 3 undergraduate hours. 4 graduate hours. Extensive computer use required. Prerequisite(s): Graduate standing or consent of the instructor. Recommended background: Engineering/Science.

CHE 457. Colloidal and Interfacial Phenomena. 3 or 4 hours.
Interfacial phenomena in practice: soap bubbles, emulsions, foams, detergents; surface tension driven flows, Marangoni effect; enterfacial rheology; colloids, emulsions, 3D-printing; interfacial thermodynamics, biological interfaces. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): CHE 301 and CHE 312.

CHE 494. Selected Topics in Chemical Engineering. 1-4 hours.
Systematic study of selected topics in chemical engineering theory and practice. Course Information: May be repeated. Students may register in more than one section per term. Prerequisite(s): Consent of the instructor.

CHE 496. Undergraduate Senior Design Thesis I. 0-8 hours.
Introduction to modern process design and development, engineering economics of chemical processes and equipment, process simulation, report writing and presentations, literature survey and undergraduate thesis. Course Information: Extensive computer use required. Prerequisite(s): Consent of the instructor.

CHE 497. Undergraduate Senior Design Thesis II. 0-8 hours.
Applications of modern process design principles and design methodology to large-scale chemical processes and plants; team design project with industrial mentor, process simulation, reports, presentations, literature survey and undergraduate thesis. Course Information: Extensive computer use required. Prerequisite(s): Consent of the instructor.

CHE 499. Professional Development Seminar. 0 hours.
Students are provided general information about their roles as UIC Chemical Engineering alumni in society and the role of the University in their future careers. Students provide evaluations of their educational experience in the Chemical Engineering Department. Course Information: Satisfactory/Unsatisfactory grading only. Prerequisite(s): Open only to seniors; and approval of the department. Must be taken in the student's last semester of study.