- Home/
- Undergraduate Catalog/
- Colleges & Departments/
- College of Engineering/
- Electrical and Computer Engineering
Department of Electrical and Computer Engineering
Contact Information:
Campus Location: 1020 Science and Engineering Offices (SEO)
(312) 996–3423
ecestudentaffairs@uic.edu
www.ece.uic.edu
Administration:
Interim Department Head, Daniela Tuninetti
Director of Undergraduate Studies, Natasha Devroye, devroye@uic.edu
ECE Student Services: ecestudentaffairs@uic.edu
BS in Electrical Engineering
The Electrical Engineering curriculum is concerned with analysis and design of modern electronic systems, devices, and signals for a broad range of applications such as wireless or network communication, electrical power and control, and multimedia information technology. The curriculum provides a wide background in the fundamental theory of electrical engineering and in the mathematical and scientific tools necessary for an electrical engineer to meet the current and future challenges of a professional career. The field of electrical engineering is currently evolving at a rapid pace since it has a major role in the accelerated growth of the technological world. This requires the modern electrical engineer not only to have a sound basis in the fundamental principles but also to have the capacity to learn and assimilate novel advances as soon as they materialize. These qualities are anticipated in the curriculum, which includes not only a sound theoretical background but also offers a variety of courses that develop the student’s ability to gain knowledge autonomously and to combine it with contemporary design techniques. Courses are in diverse areas such as signal processing, power electronics, communications, optical and electromagnetic technologies, control systems, integrated circuits, multimedia networks, and image analysis.
The curriculum includes both required and elective courses. The required courses are in engineering, mathematics, and physics; they provide a wide backdrop in science and engineering. The elective courses are more specialized and offer a broad range of electrical engineering applications. Each student is assigned a faculty advisor who assists in the selection of the courses.
In addition to classroom experience, the Electrical Engineering curriculum is planned to provide laboratory experience in electrical and electronic circuits, electromagnetics, communication and signal processing, controls, computers, and digital systems. The curriculum incorporates design projects in the student’s experience starting from the freshman year and culminating in a capstone design project in the senior year. The project requires the students to undertake a significant group design that enriches their knowledge in practical aspects of engineering principles and methodologies. Most of these projects solve realistic problems and the results are presented in an exposition. The curriculum also requires the students to acquire oral and writing skills in expressing their professional ideas and ethical norms.
The educational objectives of the Electrical Engineering undergraduate program are for its graduates to:
- Contribute to their employers, organizations, and communities.
- Be leaders in their professions around the world and expand engineering knowledge in a variety of communities.
- Practice and exhibit high ethical values and communicate effectively with colleagues and the public.
- Pursue advanced degrees or become engineers, researchers, innovators, consultants, or entrepreneurs.
Opportunities are available to participate in the activities of the student chapter of the Institute of Electrical and Electronic Engineers (IEEE) and Eta Kappa Nu, the honor society of electrical and computer engineering. An interest in robotics can be pursued by joining the Engineering Design Team, a College of Engineering student group.
BS in Computer Engineering
Computer Engineering is concerned with the application of electrical engineering and computer science principles to the design of computer systems and digital networks. Through creative utilization of tools and knowledge, a computer engineer designs digital systems that are being employed in virtually all fields of human endeavor. This requires a background in physical sciences, information sciences, electrical engineering, and computer science. Computer engineering requires skills in both the design and development of computer hardware and computer software. Depending on need, the computer engineer may work with electrical engineers, computer scientists, information systems experts, biomedical researchers, and people in almost any other field. The diversity of products that involve the design talents of a computer engineer is unlimited. These range from large to small computers to special purpose computing hardware and software embedded within devices and systems. The applications, for example, are in business to organize, process, and communicate data, communications over mobile and satellite networks, digital sound and picture processing for entertainment, household appliances, automotive systems, manufacturing process control, biomedical instrumentation, machine control, and innumerable other fields. The emphasis in computer engineering is on the design of hardware as well as software tools and systems for the acquisition, processing, storage, and transmission of data and signals by digital means.
All students are required to obtain a strong mathematical foundation, including discrete mathematics and probability and statistics. Each student acquires a common background in the fundamentals of electrical engineering and computer science. This includes course work in computer languages, data structures and algorithms, software design and development, circuit analysis, signal processing, computer architecture, digital networks, microprocessor-based design, digital electronic circuits design, and computer operating systems design. Furthermore, in consultation with an advisor, each student can follow an individualized program by taking courses selected from a departmentally approved list of technical elective courses for computer engineering. In almost all course work, students do design projects while learning to apply basic computer tools. The curriculum also requires the students to acquire oral and writing skills in expressing their professional ideas and ethical norms. As a senior, each student gains further design experience working in a group on a two-semester design project involving practical application of engineering principles.
The educational objectives of the Computer Engineering undergraduate program are for its graduates to:
- Contribute to their employers, organizations, and communities.
- Be leaders in their professions around the world and expand engineering knowledge in a variety of communities.
- Practice and exhibit high ethical values and communicate effectively with colleagues and the public.
- Pursue advanced degrees or become engineers, researchers, innovators, consultants, or entrepreneurs.
Students are encouraged to participate in the activities of the student chapters of the Institute of Electrical and Electronic Engineers (IEEE) and the Association for Computing Machinery (ACM). An interest in robotics can be pursued by joining the Engineering Design Team, a College of Engineering student group. Qualified students will be invited to join Eta Kappa Nu, the honor society for electrical and computer engineers.
BS in Engineering Physics
The BS in Engineering Physics is offered by the Department of Electrical and Computer Engineering (College of Engineering) in association with the Department of Physics (College of Liberal Arts and Sciences).
The Engineering Physics major bridges the gap between science and technology by combining a strong background in physics and mathematics with exposure to the most fundamental areas of engineering. The program is based on the recognition that most engineering disciplines are rooted in the field of physics, and that new and emerging technologies rarely fall neatly within a single engineering discipline but often straddle different fields. The program highlights, for instance, the subtle and deep relations between materials science and civil engineering, between solid-state physics and chemical engineering, and between electromagnetics and telecommunication engineering.
This training is especially well suited to students who wish to pursue careers in research and development in advanced technology and applied science. In particular, students majoring in this program are well qualified to pursue graduate studies in most areas of engineering and applied physics. They may also pursue a master’s degree in education, thus qualifying to teach physics in high school.
The content of this program strongly emphasizes topics in physics and mathematics; however, this curriculum also gives students great flexibility in the choice of topics for technical electives. Students can customize their curriculum by choosing three technical elective courses from many fields.
The educational objectives of the Engineering Physics undergraduate program are for its graduates to:
- Contribute to their employers, organizations, and communities.
- Be leaders in their professions around the world and expand engineering knowledge in a variety of communities.
- Practice and exhibit high ethical values and communicate effectively with colleagues and the public.
- Pursue advanced degrees or become engineers, researchers, innovators, consultants, or entrepreneurs.
Students interested in the Engineering Physics major should contact the Department of Electrical and Computer Engineering at ugrad-info@ece.uic.edu.
Accreditation
- The computer engineering program at UIC is accredited by the Engineering Accreditation Commission of ABET
- The electrical engineering program at UIC is accredited by the Engineering Accreditation Commission of ABET
- The engineering physics program at UIC is accredited by the Engineering Accreditation Commission of ABET
ECE 115. Introduction to Electrical and Computer Engineering. 4 hours.
Concepts of electrical and computer engineering including: ciruit analysis, fundamental electromagnetics, electronic devices, sensors, communication, digital logic, programming, numerous practical applicaitons; laboratory. Course Information: Much MATLAB programming, which is taught in the course, is required. Prerequisite(s): Credit or concurrent registration in MATH 180; or Grade of C or better in MATH 165. Natural World - With Lab course.
ECE 210. Electrical Circuit Analysis. 3 hours.
Linear circuit analysis: networks, network theorems, dependent sources, operational amplifiers, energy storage elements, transient analysis, sinusoidal analysis, frequency response, filters. Laboratory. Course Information: Prerequisite(s): Credit or concurrent registration in MATH 180. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.
ECE 225. Circuit Analysis. 4 hours.
Electric circuit elements; Ohm's Law; Kirchhoff's laws; transient and steady-state analysis of circuits; Laplace transform methods; network theorems. Laboratory. Course Information: Credit is not given for ECE 225 if the student has credit for ECE 210. Prerequisite(s): Credit or concurrent registration in MATH 220; and a Grade of C or better in PHYS 142; and Grade of C or better in ECE 115. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.
ECE 265. Introduction to Logic Design. 4 hours.
Number Systems; Binary arithmetic; Boolean/Logic functions; Boolean Algebra; logic gates, their CMOS design; function minimization, analysis and synthesis of combinational and sequential circuits. Course Information: Credit is not given for ECE 265 if the student has credit for CS 266 or CS 366. Laboratory. Prerequisite(s): MATH 180 and grade of C or better in ECE 115. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.
ECE 266. Introduction to Embedded Systems. 4 hours.
Introduction to embedded systems and microcontroller; instruction set; data representations; assembly programming; mixed C/assembly programming; memory organization; interrupt processing; I/O devices and interfacing; programming laboratory. Course Information: Credit is not given for ECE 266 if the student has credit in CS 261. Extensive computer use required. Prerequisite(s): CS 107; and Credit or concurrent registration in ECE 265.
Class Schedule Information: To be properly registered, students must enroll in one Lecture and one Laboratory.
ECE 267. Computer Organization I. 3 hours.
Introduction to computer organization and assembly language programming. Memory, CPU, and I/O organization. Programming techniques and tools. Course Information: Credit is not given for ECE 267 if the student has credit for CS 266 or CS 366. Prerequisite(s): CS 107; and credit or concurrent registration in ECE 265.
ECE 294. Special Topics in Electrical and Computer Engineering. 1-4 hours.
Multidisciplinary electrical and computer engineering topics at second-year level that vary from term to term depending on current student and instructor interests. Course information: May be repeated if topics vary.
ECE 310. Discrete and Continuous Signals and Systems. 3 hours.
Signals; systems; convolution; discrete and continuous Fourier series and transforms; Z-transforms; Laplace transforms; sampling; frequency response; applications; computer simulations. Course Information: Prerequisite(s): MATH 220 and credit or concurrent registration in ECE 225; or credit or concurrent registration in ECE 210 for non-ECE students.
ECE 311. Communication Engineering. 4 hours.
Continuous-time signals and spectra; amplitude and angle modulation, sampling and quantization theory; digital pulse modulation, error probability, commercial broadcasting practices. Course Information: Prerequisite(s): Grade of C or better in ECE 310; and ECE 341. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.
ECE 317. Digital Signal Processing I. 4 hours.
Sampling theorem; discrete signals and systems; discrete time Fourier transform; DFT; FFT; IIR and FIR digital filter design; stability; DSP applications. Laboratory. Course Information: Prerequisite(s): Grade of C or better in ECE 310. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.
ECE 322. Introduction to Electromagnetics and Applications. 4 hours.
Transmission lines. Plane waves in various media. Polarization and Stoke's parameters. Scalar and vector potentials. Guided wave propagation. Radiation. Linear antennas and antenna parameters. Course Information: Prerequisite(s): ECE 225. Class Schedule Information: To be properly registered, students must enroll in one Lecture-Discussion and one Laboratory.
ECE 333. Computer Communication Networks I. 4 hours.
A balanced presentation focuses on the internet as a specific motivating example of a network and also introduces internet protocols in a more theoretical context. Course Information: Credit is not given for ECE 333 if the student has credit for CS 450. Prerequisite(s): ECE 341 and CS 107. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.
ECE 340. Electronics I. 4 hours.
Operational amplifiers. Semiconductor junctions. Bipolar and field-effect transistors. Simple transistor amplifier and switching applications. Introduction to digital logic circuits. Laboratory experience. Course Information: Prerequisite(s): Grade of C or better in ECE 225. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.
ECE 341. Probability and Random Processes for Engineers. 3 hours.
Probability, random variables, discrete and continuous distributions, transformation of random variables, expectation, generating functions, statistical inference, hypothesis testing, estimation, random processes, stationarity, applications. Course Information: Credit is not given for ECE 341 if the student has credit for IE 342. Prerequisite(s): Grade of C or better in MATH 210.
ECE 342. Electronics II. 4 hours.
Differential amplifiers. Feedback amplifiers. Frequency response, stability and compensation of amplifiers. Circuit implementation of logic gates in various logic families. Bistable and memory circuits. Laboratory. Course Information: Prerequisite(s): ECE 340. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.
ECE 346. Solid State Device Theory. 4 hours.
Introduction to semiconductors, Energy bands, Electron and hole transport mechanisms in semiconductor devices, recombination and generation, P-N Junctions. Intro to metal-oxide-semiconductor field effect transistors. Practical laboratory. Course Information: Prerequisite(s): MATH 220 and a grade of C or better in ECE 115 and a grade of C or better in PHYS 142. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.
ECE 347. Integrated Circuit Engineering. 3 hours.
Introduction to processing technology of integrated circuits: thin film deposition, doping, oxidation, epitaxy and lithography. Design, layout, assembly, testing and yield. Design project. Course Information: Prerequisite(s): CHEM 112 and a grade of C or better in ECE 225.
ECE 350. Principles of Automatic Control. 4 hours.
Transfer function; block diagrams; flow graphs; state space canonic forms; stability analysis; steady state and transient analysis; feedback control; continuous to discrete conversion; digital control. Course Information: Prerequisite(s): MATH 310 and grade of C or better in ECE 310. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.
ECE 366. Computer Organization. 3 hours.
Software/hardware interaction in a computer. Compiler, assembler and linker, machine code. Clocking, datapath, control unit, ALU and memory design, cache memory, pipelining. Course Information: Credit is not given for ECE 366 if the student has credit for CS 261 or CS 262. Prerequisite(s): ECE 266.
ECE 367. Microprocessor-Based Design. 4 hours.
Microprocessor architecture; microprogrammed machines; programmer's model; control signals and timing; system buses; parallel and serial interfacing; interrupt processing; I/O devices; memory devices; direct memory access; assembly language. Laboratory. Course Information: Prerequisite(s): ECE 267; and a grade of C or better in ECE 265 or a grade of C or better in CS 366. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.
ECE 368. CAD-Based Digital Design. 4 hours.
Semi-complex circuit and system design techniques, data path control using FSMs, VHDL programming, circuit/system design projects using VHDL and CAD tools (VHDL Simulation, Circuit Synthesis). Course Information: Credit is not given for ECE 368 if the student has credit for CS 469. Laboratory. Prerequisite(s): ECE 366. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture.
ECE 391. Electrical and Computer Engineering Practicum. 1 hour.
Provides students with the opportunity to apply the skills and knowledge gained in previous engineering courses within a professional, working environment. Course Information: Satisfactory/Unsatisfactory grading only. May be repeated. A maximum of 1 hour awarded toward degree requirements. Prerequisite(s): Approval of the Department.
ECE 392. Undergraduate Research. 1-5 hours.
Research under close supervision of a faculty member. Course Information: Satisfactory/Unsatisfactory grading only. Prerequisite(s): Consent of the instructor.
ECE 394. Special Topics in Electrical and Computer Engineering. 1-4 hours.
Multidisciplinary electrical and computer engineering topics at third-year level that vary from term to term depending on current student and instructor
interests. Course Information: May be repeated if topics vary.
ECE 396. Senior Design I. 2 hours.
Introduction to the principles and practice of product design: specifications, evaluation of design alternatives, technical reports, and oral presentations. Independent design projects. Course Information: Prerequisite(s): ENGL 161; and ECE 225; and ECE 340 or ECE 346 or ECE 366. Open only to seniors.
ECE 397. Senior Design II. 2 hours.
Implement and test the group project designed in ECE 396; professional development; group presentations including participation at EXPO. Course Information: Prerequisite(s): ECE 396. Class Schedule Information: To be properly registered, students must enroll in one Lecture and one Laboratory.
ECE 407. Pattern Recognition I. 3 or 4 hours.
The design of automated systems for detection, recognition, classification and diagnosis. Parametric and nonparametric decision-making techniques. Applications in computerized medical and industrial image and waveform analysis. Course Information: Same as BME 407. 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 341 or BME 339 or IE 342 or STAT 381.
ECE 410. Advanced Circuit Analysis. 3 or 4 hours.
Matrix algebra for network analysis, network parameters, macromodeling, high-frequency measurements, network functions and theorems. Topics in computer-aided analysis. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): MATH 310 and grade of C or better in ECE 310.
ECE 412. Introduction to Filter Synthesis. 3 or 4 hours.
Fundamentals of network synthesis, filter approximations and frequency transformations. Active filter synthesis using bi-linear and bi-quad circuits. Topics in computer-aided design. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Grade of C or better in ECE 310.
ECE 415. Image Analysis and Computer Vision I. 3 or 4 hours.
Image formation, geometry and stereo. Two-dimensional image analysis by fourier and other 2-D transforms. Image enhancement, color, image segmentation, compression, feature extraction, object recognition. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Grade of C or better in ECE 310.
ECE 417. Digital Signal Processing II. 0-5 hours.
Computer-aided design of digital filters; FFT algorithms and applications; multirate signal processing and wavelets; random signals and Wiener filtering; basics of 2-D DSP.Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 317. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.
ECE 418. Statistical Digital Signal Processing. 3 or 4 hours.
Stochastic signal models, LMS identification, identification of signals from noise, Wiener filtering, blind separation of mixed signal, discrete Wavelet Transforms, compression and denoising, ceptral analysis. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 317 and ECE 341.
ECE 421. Introduction to Antennas and Wireless Propagation. 3 or 4 hours.
Potential, antenna parameters, radiation from linear wires and loops, impedance, arrays, communication links and path loss, tropospheric propagation, fading and diversity. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 225 and ECE 322.
ECE 423. Electromagnetic Compatibility. 0-5 hours.
EMC requirements for electronic systems. Nonideal behavior of components. Radiated and conducted emissions. Susceptibility. Coupling and shielding. Electrostatic discharge. System design for EMS. Course Information: Prerequisite(s): MATH 310 and ECE 322. To be properly registered, students must enroll in one Lecture-Discussion and one Laboratory.
ECE 424. RF and Microwave Engineering. 0-5 hours.
Transmission lines, Smith chart, strip, active RF devices and components, power amplifiers, voltage-controlled oscillators, mixers, wireless communication and radar systems, resonators, two-port parameters, power and energy considerations. Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 225 and ECE 322. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.
ECE 432. Digital Communications. 3 or 4 hours.
Source coding, quantization, signal representation, channel noise, optimum signal reception, digital modulation: ASK, PSK, FSK, MSK, M-ary modulation. Probability of error. Inter-symbol interference. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): MATH 310, ECE 311 and ECE 341.
ECE 434. Multimedia Systems. 3 or 4 hours.
Multimedia systems; compression standards; asynchronous transfer mode; Internet; wireless networks; television; videoconferencing; telephony; applications. Course Information: 3 undergraduate hours. 4 graduate hours. Extensive computer use required. Prerequisite(s): ECE 310.
ECE 436. Computer Communication Networks II. 3 or 4 hours.
Explores integrated network architecture of service, control signaling and management, examples of high-speed LAN/WAN, next generation Internet and mobile wireless network. Course Information: 3 undergraduate hours. 4 graduate hours. Extensive computer use required. Prerequisite(s): ECE 333.
ECE 437. Wireless Communications. 3 or 4 hours.
Cellular concept, frequency reuse, mobile radio propagation, channel fading, noise in analog communications, mobile radio channel equalization, multiple access techniques (FDMA, TDMA, CDMA), wireless networking. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 311 and ECE 341.
ECE 440. Nanoelectronics. 3 or 4 hours.
Wave-particle duality, Schrodinger equation, atomic orbitals, band theory of solids. Semiconductor and carbon nanoelectronic materials. Nanostructure device fabrication. Nanoelectromechanical systems. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 346; or consent of the instructor.
ECE 442. Power Semiconductor Devices and Integrated Circuits. 0-5 hours.
Encompasses fundamentals of primarily silicon based power semiconductors with regard to basic physical principles, breakdown mechanisms, high voltage bipolar and insulated gate devices, and basic packaging issues.Course Information: 4 undergraduate hours. 5 graduate hours. Credit is not given for ECE 442 if the student has credit for EECS 442. ECE 442 is a supplement for ECE 445 and ECE 545. Prerequisite(s): ECE 346. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.
ECE 445. Analysis and Design of Power Electronic Circuits. 0-5 hours.
Analysis of different isolated and non-isolated power-converter topologies, understanding of power-converter components, switching schemes. Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 342. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.
ECE 448. Transistors. 3 or 4 hours.
Bipolar junction transistors, electronic processes in surface-controlled semiconductor and dielectric devices. Metal oxide semiconductor filed effect transistors, surface and interface effects, diode lasers, integrated optoelectronic devices. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 346.
ECE 449. Microdevices and Micromachining Technology. 0-5 hours.
Microfabrication techniques for microsensors, microstructures, and microdevices. Selected examples of physical/chemical sensors and actuators. Simulation experiments. Course Information: Same as ME 449. 4 undergraduate hours. 5 graduate hours. Laboratory. Prerequisite(s): ECE 347; or consent of the instructor. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture-Discussion.
ECE 451. Control Engineering. 3 or 4 hours.
Continuous-and discrete-time state-space models; solutions to state equations; stability; reachabilty/controllability, state feedback, tracking; observability, observers, output feedback; optimal control and estimation. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 350; and Grade of C or better in MATH 310.
ECE 452. Robotics: Algorithms and Control. 3 or 4 hours.
Kinematic and dynamic modeling of robots; configuration space; motion planning algorithms; control of robots; sensors and perception; reasoning; mobile robots. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Grade of C or better in ECE 310; and MATH 310.
ECE 454. Mechatronic Embedded Systems Design. 0-5 hours.
Design and fabrication of scaled-down autonomous vehicles, from an embed system perspective; mechatronic components such as motors, microcontrollers, power supply, sensors, control algorithms, project oriented, culminating in racing competition. Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 266 and ECE 310 and ECE 340; or consent of the instructor. Recommended Background: ECE 350 and ECE 412 and ECE 451. Class Schedule Information: To be properly registered, students must enroll in one Laboratory and one Lecture.
ECE 458. Electromechanical Energy Conversion. 0-4 hours.
Electromagnetic forces and torque; magnetic circuits and transformers; DC machines; three-phase AC synchronous and induction machines; laboratory-demonstrations. Projects are required. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Grade of C or better in ECE 225. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.
ECE 464. Testing and Reliability of Digital Systems. 3 or 4 hours.
Theory, practice and recent innovations in the testing and reliability of modern digital systems. Topics: fault modeling / simulation, automatic test pattern generation, built-in self-test, fault tolerance. Course Information: 3 undergraduate hours. 4 graduate hours. Extensive computer use required. Prerequisite(s): CS 251; and ECE 366.
ECE 465. Digital Systems Design. 3 or 4 hours.
Switching algebra, combinational circuits, Mux, ROM, DCD, PLA-based designs, advanced combinational circuit minimization techniques, sychronous and asynchronous sequential circuit synthesis (minimization, hazards, races, state assignment) testing. Course Information: 3 undergraduate hours. 4 graduate hours. Prerequisite(s): Grade C or better in PHYS 142; and ECE 366.
ECE 466. Computer Architecture. 3 or 4 hours.
Design principles of computer architecture. Topics include: instruction set architecture, pipelining, instruction-level parallelism, caches, main memory, and thread-level parallelism. Course Information: Same as CS 466. 3 undergraduate hours. 4 graduate hours. Prerequisite(s): ECE 366 or CS 261.
ECE 467. Introduction to VLSI Design. 0-5 hours.
MOS, CMOS circuits VLSI technology, CMOS circuit characterization and evaluation. Static and dynamic MOS circuits, system design, faults, testing, and symbolic layout. Laboratory. Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 340. Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.
ECE 468. Analog and Mixed - Signal Integrated Circuits. 0-5 hours.
Review of basic analog concepts; Sampling and mixed-signal interface circuits; analytical analysis and CAD-based design/simulation; emphasis on compact modeling, design tradeoffs, and intuitive design approaches. Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 342.Class Schedule Information: To be properly registered, students must enroll in one Laboratory-Discussion and one Lecture-Discussion.
ECE 469. Hardware Description Language Based Digital and Computer System Design. 0-5 hours.
Hardware description language (HDL) introduction; digital system design including arithmetic circuit, datapath and control; basic processor architecture and design; use of CAD tools for simulation, synthesis, and verification. Course Information: 4 undergraduate hours. 5 graduate hours. Prerequisite(s): ECE 366; and ECE 465. Class Schedule Information: To be properly registered, students must enroll in one Lecture and one Laboratory.
ECE 491. Seminar. 1-4 hours.
Topics of mutual interest to a faculty member and a group of students. Offered as announced by department bulletin or the Timetable. Course Information: May be repeated. Prerequisite(s): Consent of the instructor.
ECE 493. Special Problems. 1-5 hours.
Special problems or reading by special arrangement with the faculty. Course Information: No graduation credit for students in the following: MS in Electrical and Computer Engineering or PhD in Electrical and Computer Engineering. Prerequisite(s): Consent of the instructor.
ECE 496. Undergraduate Senior Design Thesis I. 0-8 hours.
Introduction to engineering design and research methods: design tools, product conception and development, simulation, prototyping, technical reports and presentations, literature survey and undergraduate thesis. Course Information: Credit for ECE 496 only given to non-degree students. No graduation credit is given for ECE 496 to students enrolled in any degree program in Engineering. Extensive computer use required. Prerequisite(s): Consent of the instructor.
ECE 497. Undergraduate Senior Design Thesis II. 0-8 hours.
Introduction to engineering design and research methods: design tools, product conception and development, simulation, prototyping, technical reports and presentations, literature survey and undergraduate thesis. Course Information: Credit only given to non-degree students. No graduation credit given to students enrolled in Engineering. Extensive computer use required. Prerequisite(s):
Consent of the instructor.
ECE 499. Professional Development Seminar. 0 hours.
Graduating seniors will be provided with information regarding future career paths and will provide information regarding the program to be used for assessment purposes. Course Information: Satisfactory/Unsatisfactory grading only. Prerequisite(s): Open only to seniors; and approval of the department. Must be taken in the student's last semester of study.